WP1 - parsers, a whole lot of them. ..

Fawzi Mohamed

27.10.2015




NOMAD-DB

» code independent
representation

» Flink for map/reduce and
more advanced queries

> enable big data analysis
between and across different
codes




High-level architecture

NoMaD
Repository

Synchronized,

! local or BeeGFS storage BeeGFS like storage
consistent checksums




Map & reduce

> way to express some algorithms that makes them easy to
parallelize, became popular after Google article
» can work well on distributed data



http://research.google.com/archive/mapreduce.html

Flink @

» Flink, started here in Berlin

> One of the leading frameworks for data-flow and streaming
optimization that improves on the map reduce approach

» Tries to support not just data-flow or stream processing but
also iterative methods, graph processing and some machine
learning algorithms



http://flink.apache.org/

NoMaD Repository

> http://nomad-repository.eu/

» Joint effort by the FHI (Matthias Scheffler), HUB (Claudia
Draxl) and the MPCDF Garching (Stefan Heinzel).

» Lorenzo Pardini » Thomas Zastrow
» Fawzi Mohamed » Pasquale Pavone
» Hermann Lederer » Luca Ghiringhelli
» Johann-Christoph Freytag » Binyam Gebrekidan Gebre
» Christian Carbogno » Former members:

» Evgeny Blokhin



http://nomad-repository.eu/

NoMaD Repository

NoMaD
RepoSitory w»

» source of data for the
repository

> encourage data sharing,
re-purposing and validation

» large amount of open access
data

> 634'014 entries, OQMD is
being added, materials
project will follow




Parsers... for NOMAD

> extract information from simulation input and outputs to
make it available for analysis

» information that is not extracted is invisible to us, a parser
defines the data that can be analyzed

> to make the data processable in an automatic way it should
be mapped to a clear model




Meta data: our conceptual model

» define how the data that we extract is organized, and what it
is

» important both for human and for the machine

» data values consist of simple data types and multidimensional
arrays of them

> group together similar types making them inherit from the
same type (all energies inherit from the energy)

> group together values with sections

» allow one to many relationships between sections




Common meta data: how to describe code independent
quantities

1 _ 1
section_run }7
1. 1.
‘ section_method ’ section_system_description ’
1 ‘ 1
1. 1.
section_single_point_evaluation ’
1
1..

section_scf_iteration ’




Common meta data

https://nomad-dev.rz-berlin.mpg.de/wiki/NomadMetaInfs


https://nomad-dev.rz-berlin.mpg.de/wiki/NomadMetaInfo

What did we learn on parsers

parsers should be fast because we want to apply them to large
quantities of data (and re-parse regularly)

v

v

parsers should be usable in various contexts

v

code change in time, parsers need to evolve

we will maintain and improve them for a while

v




Decoupling the parsers

Backend Front-end
2

Parser &&=
file

v

Independent systems are more robust

v

can be changed or optimized independently

» can be reused in different contexts

v

but the interface has to be chosen carefully, because it will
dictate performance and complexity




The simplest kind of efficient parser

vV VvV V.V VY

push parser

call back based

can stream (avoids loading everything in memory)

main problem:

you cannot tell the parser to skip some info

solve this by adding the possibility to tell the parser about
which info you are interested in




The dangers of freedom

» what is not seen by parsers is not seen by analysis

> data reliability is one of the most challenging problems

» we do not want throwaway parsers, parsers should detect
subtle problems

>

did the program encounter a strange situation during
convergence

where there warnings? Do they get propagated or is it just a
line somewhere in the output

where there multiple runs in the same file? are they detected
correctly?

...and in the same directory? Are ancillary files really
associated with the current run? What do creation dates
say?. ..

contact with the code developers can help




declarative parsers

> try to describe the information that will be extracted

» we already have a way to do that: the meta data, we can
extend it to describe code specific things too

> try to describe where to extract it

» example FHI-aims parser v3 written in python

» describe what should be done, but not how to do it: several
ways to compile it into a real parser: adaptable and efficient

> close to documenting the thing to be parsed

» simpler for another person to change or optimize the parser
(more optimization potential)




Declarative parsers problems

v

difficult to describe transformations declaratively

» can be more tedious to write

v

can be more difficult to debug (supporting tools can help here)

v

possible solutions:
» many derived quantities (like the normalized values) can be
calculated at the section closing with a bit of caching
» more complex normalization can be performed by another
program.




The ideal parser

» starts with a declarative parser capable of parsing basically all
information contained in an output

> optimizes it to extract the quantities required to calculate the
code independent representation

» calculate the code independent quantities and return them
» can be reused in different contexts

» we can later decide that a quantity we ignored is now of
interest.




WP1:

not only parsers

meta data tools
getting raw data to parse, unique identifiers
uncompress, find out which parser to use

try to keep parsers minimal — common transformation in
normalization step

URI and interface to access pieces of data

DB for meta data and references




Identifiers

» identifier (gid) uses a small prefix (depending on what was
checksummed) + the first 28 characters (168 bits) of the
base64 encoding of the SHA-512 digest to identify most
things (files, metadata, normalized data. .. )

» this allows one to build uri (nmd://gid/path) that refer to
single quantities, or files within an archive

» uri do not depend on where the file is stored: ready for
distributed approach



nmd://gid/path

» CAM

» FHI-MPG:
» FHl-aims, VASP > CASTEP,
» Quantum Espresso, abinit QUIP/libatoms/GAP, Molpro,
! ' LAMMPS
3
Dmol, Dmol®, CASTEP » ASE related
» HUB » AALTO
> exciting - cp2k
» WIEN2k, ELK, FLEUR, FPLO ~ VASP. GPAW, LAMMPS,
» UB Quantum Espresso
> Gaussian, GAMESS, NWChem, - Smeagol, Octopus, Crystal,
Molcas, CRYSTAL BigDFT, SIESTA
» DL_POLY, GULP » MPSD-MPG
» KCL » Quantum Espresso, octopus?
» onetep, CASTEP, LAMMPS, » DTU

DL_POLY, LM Suite
(TB-LMTO-ASA)
» ASE related

» GPAW and ASAP
» ASE: Elk, gromacs, MOPAC,
SIESTA



