
WP1 - parsers, a whole lot of them. . .

Fawzi Mohamed

27.10.2015



NOMAD-DB

I code independent
representation

I Flink for map/reduce and
more advanced queries

I enable big data analysis
between and across different
codes



High-level architecture



Map & reduce

I way to express some algorithms that makes them easy to
parallelize, became popular after Google article

I can work well on distributed data

http://research.google.com/archive/mapreduce.html


Flink

I Flink, started here in Berlin

I One of the leading frameworks for data-flow and streaming
optimization that improves on the map reduce approach

I Tries to support not just data-flow or stream processing but
also iterative methods, graph processing and some machine
learning algorithms

http://flink.apache.org/


NoMaD Repository

I http://nomad-repository.eu/

I Joint effort by the FHI (Matthias Scheffler), HUB (Claudia
Draxl) and the MPCDF Garching (Stefan Heinzel).

I Lorenzo Pardini

I Fawzi Mohamed

I Hermann Lederer

I Johann-Christoph Freytag

I Christian Carbogno

I Thomas Zastrow

I Pasquale Pavone

I Luca Ghiringhelli

I Binyam Gebrekidan Gebre
I Former members:

I Evgeny Blokhin

http://nomad-repository.eu/


NoMaD Repository

I source of data for the
repository

I encourage data sharing,
re-purposing and validation

I large amount of open access
data

I 634’014 entries, OQMD is
being added, materials
project will follow



Parsers. . . for NOMAD

I extract information from simulation input and outputs to
make it available for analysis

I information that is not extracted is invisible to us, a parser
defines the data that can be analyzed

I to make the data processable in an automatic way it should
be mapped to a clear model



Meta data: our conceptual model

I define how the data that we extract is organized, and what it
is

I important both for human and for the machine
I data values consist of simple data types and multidimensional

arrays of them
I group together similar types making them inherit from the

same type (all energies inherit from the energy)
I group together values with sections
I allow one to many relationships between sections



Common meta data: how to describe code independent
quantities

section run

section system description

section single point evaluation

section scf iteration

section method

1

1.. 1..

1

1.. 1..
1 1

1..

1



Common meta data

https://nomad-dev.rz-berlin.mpg.de/wiki/NomadMetaInfo

https://nomad-dev.rz-berlin.mpg.de/wiki/NomadMetaInfo


What did we learn on parsers

I parsers should be fast because we want to apply them to large
quantities of data (and re-parse regularly)

I parsers should be usable in various contexts

I code change in time, parsers need to evolve

I we will maintain and improve them for a while



Decoupling the parsers

I Independent systems are more robust

I can be changed or optimized independently

I can be reused in different contexts

I but the interface has to be chosen carefully, because it will
dictate performance and complexity



The simplest kind of efficient parser

I push parser
I call back based
I can stream (avoids loading everything in memory)
I main problem:
I you cannot tell the parser to skip some info
I solve this by adding the possibility to tell the parser about

which info you are interested in



The dangers of freedom

I what is not seen by parsers is not seen by analysis

I data reliability is one of the most challenging problems
I we do not want throwaway parsers, parsers should detect

subtle problems
I did the program encounter a strange situation during

convergence
I where there warnings? Do they get propagated or is it just a

line somewhere in the output
I where there multiple runs in the same file? are they detected

correctly?
I . . . and in the same directory? Are ancillary files really

associated with the current run? What do creation dates
say?. . .

I contact with the code developers can help



declarative parsers

I try to describe the information that will be extracted
I we already have a way to do that: the meta data, we can

extend it to describe code specific things too
I try to describe where to extract it
I example FHI-aims parser v3 written in python
I describe what should be done, but not how to do it: several

ways to compile it into a real parser: adaptable and efficient
I close to documenting the thing to be parsed
I simpler for another person to change or optimize the parser

(more optimization potential)



Declarative parsers problems

I difficult to describe transformations declaratively

I can be more tedious to write

I can be more difficult to debug (supporting tools can help here)
I possible solutions:

I many derived quantities (like the normalized values) can be
calculated at the section closing with a bit of caching

I more complex normalization can be performed by another
program.



The ideal parser

I starts with a declarative parser capable of parsing basically all
information contained in an output

I optimizes it to extract the quantities required to calculate the
code independent representation

I calculate the code independent quantities and return them

I can be reused in different contexts

I we can later decide that a quantity we ignored is now of
interest.



WP1: not only parsers

I meta data tools

I getting raw data to parse, unique identifiers

I uncompress, find out which parser to use

I try to keep parsers minimal → common transformation in
normalization step

I URI and interface to access pieces of data

I DB for meta data and references



Identifiers

I identifier (gid) uses a small prefix (depending on what was
checksummed) + the first 28 characters (168 bits) of the
base64 encoding of the SHA-512 digest to identify most
things (files, metadata, normalized data. . . )

I this allows one to build uri (nmd://gid/path) that refer to
single quantities, or files within an archive

I uri do not depend on where the file is stored: ready for
distributed approach

nmd://gid/path


I FHI-MPG:

I FHI-aims, VASP
I Quantum Espresso, abinit,

Dmol, Dmol3, CASTEP

I HUB

I exciting
I WIEN2k, ELK, FLEUR, FPLO

I UB

I Gaussian, GAMESS, NWChem,
Molcas, CRYSTAL

I DL POLY, GULP

I KCL

I onetep, CASTEP, LAMMPS,
DL POLY, LM Suite
(TB-LMTO-ASA)

I ASE related

I CAM

I CASTEP,
QUIP/libatoms/GAP, Molpro,
LAMMPS

I ASE related

I AALTO

I cp2k
I VASP, GPAW, LAMMPS,

Quantum Espresso
I Smeagol, Octopus, Crystal,

BigDFT, SIESTA

I MPSD-MPG

I Quantum Espresso, octopus?

I DTU

I GPAW and ASAP
I ASE: Elk, gromacs, MOPAC,

SIESTA


