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The Novel Materials Discovery (NOMAD) Laboratory maintains the
largest Repository for input and output files of all important
computational materials science codes.
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Recent Success Stories

for analysis.

Thermal-barrier coatings have driven the
fuel-efficiency improvement in turbines
uuer the last 30 years

From its open-access data it builds several Big-Data Services helping
to advance materials science and engineering.

Watch a 3-minute summary on the NOMAD Laboratory CoE (or at
YOUKU in China)

http://nomad-coe.eu

NOMAD Scope and Overview

Excellence

Heat cnnductwlt {from low to hi h}
is key for many technologies.

Data is a crucial raw material of the 21st century.

Data: Theoretical Material Science Calculations

http://nomad-repository.eu

e Source of our data

e Established to host organize and
share materials data

e Keeps data for at least 10 Years

e Open access and restricted data

e Largest repository

e not limited to a single
computer code or closed
research group or consortium.

* We use only open access data

* Joint effort by the groups of
Matthias Scheffler, FHI Berlin and Claudia Drax|, HU Berlin
Max Planck Computer & Data Facility (MPCDF)

E NOMAD Repository j . Parser§ in.terpret a]l calculation data
« Organize it according to the metadata structure
Parsing ~_---=-==F=--c-mtomommm oo « Data not extracted is invisible
Raw Data . V\/.riting.a parser cannot be automatized and requires a person
(Bag-It archlves with scientific knowledge
List of Archives .
to parse » Parallel execution .
rd < o Tree Parser identifies the files

e Calculation Parser performs the parsing and generates the
parsed files

e Parsing is pure: the same version on the same data should give
the same result

Lots of codes and formats
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We develop and implement methods that identify
correlations and structure in big data of materials. This will
enable scientists and engineers to decide which materials
are useful for specific applications or which new materials
should be the focus of future studies.

The first step to enable this is to make the data available

Here the BBDC knowledge in scaling big data analysis
enriches the expertise of the NOMAD Center of
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The preparation, synthesis, and characterization of new
materials is a complex and costly aspect of materials design.
About 200,000 materials are “known” to exist, but the basic
properties (e.g., optical gap, elasticity constants, plasticity,
piezoelectric tensors, conductivity, etc.) have been
determined for very few of them. Considering organic and
Inorganic materials, surfaces, interfaces, and
nanostructures, as well as inorganic/organic hybrids, the
number of possible materials is practically infinite. It is
therefore highly likely that new materials with superior (but
currently unknown) properties exist but still have yet to be
identified, which could help address fundamental issues in a
number of widespread fields such as energy storage and
transformation, mobility, safety, information, and health.

Despite a huge number of possible materials, we note that “the chemical compound space” is sparsely
populated when the focus is on selected properties or functions. Our aim Is to develop big-data analytics
tools that will help to sort all of the available materials data to identify trends and anomalies.

BBDC Fruits

More efficient Storage

Thanks to BBDC we began using Parquet, a columnar data format, which
uses less space and can be efficiently scanned.
% Parquet

Optimzed query language
Querying and accessing the data is crucial. With Emma we have efficient
guerying, and retrival

Big data analysis: Similarity & Clustering

Often we query and extract a smaller datasets that then we process in a
notebook.

Structure similarity and clustering is an important building block for
classification (naming,...) and analysis. Here being able to do across the
whole data gives an obvious advantage. For this reason we worked in the
past with Shinichi (Machine Learning, TU) at improving our similarity
measures, and now also with Alexander (DIMA) to evaluate them
efficiently.

Tool: Two-dimensional Embedding

50
Total-Energy Calculations Bulk Crystals Surfaces Molecules/Clusters
40,481,615 281,135 1,936,325 91
— 40
Different Geometries Chemical Compositions Band Structures Phonon Calculations g O
.E:
e 9,274 Zip Archives for parsing: 16.5 TB of data é 301
(compressed) 3
» Data extracted with parsing: 5.6 TB of HDF5 files S
(compressed) ? 201
D
« Data classified using 168 public metadata of the NOMAD g
Meta Info and 2,360 code-specific metadata = 10
 Number of parsed quantities 871,497,996

OCTEMAMI JASONDJEMAMJ J A

2015 2016 2017

ONDJ MAMJ J A

A web-based implementation (via notebook) of a data-analysis tool for the
recognition of the similarity among crystal structures and to highlight a
guantity like the energy difference in formation energy among them. The
tool gathers the data for the analysis by a query to the NOMAD Archive,
that contains several millions of crystal configurations.

The similarity-recognition algorithm, based on the radial distribution
function can then projected in two dimensions using several algorithms:
l.e. Principal Component Analysis (PCA), and a selection of non-linear
embedding methods.

Viewer

The NOMAD Laboratory
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