+&@_ CSCS S
\\' ' Centro Svizzero di Calcolo Scientifico E'" Z U r I Ch

Swiss National Supercomputing Centre

Sarus-slurm
a SPANK slurm Plugin written in Zig

Fawzi Mohamed

Containers

Give user control of the user
space

install any software

architecture and kernel remain
the same

various levels of isolation and
control

can be completely rootless
(unprivileged), the user does
not acquire new

large ecosystem of tools

tries to make execution
reproducible by freezing the
userspace tools and libraries

&9 @® CSCS

S 4

mount namespace

chroot (user has control on the
whole filesystem layout)

uenv ~> container with a
"golden image"

container can give the user
more freedom/control

if one uses that freedom things
are not necessarily optimized
for the specific hardware

hooks help in making hardware
optimization accessible to
more containers

Container first

e Make the usage of container more transparent and e EDF: Environment Definition File

seamless o our solution to avoid repeating lot of options

e To the user it should look as much as possible like e Atoml file that defines

the normal usage of a cluster : :
o image or a docker file

e but with more control on his environment .
o mount points,

o well reproducible (prescriptive) o environment variables

o customizable to take advantage of existing
containers, test new releases, and use new
containers rebuilt from scratch

o annotations

e still in evolution

o can have usual home/scratch folder with their
data

\?\o:-o CSCS 5 ETHziirich

https://toml.io/

sample.toml

mounts = ["$SCRATCH:SSCRATCH"]
entrypoint = false

[image]

dockerfile="""

FROM nvcr.io/nvidia/pytorch:22.12-py3

to avoid interaction with apt-get
ENV DEBIAN_FRONTEND=noninteractive

RUN apt-get update && apt-get install -y \
--allow-downgrades --allow-change-held-packages \
--no-install-recommends \

build-essential \
automake \
autoconf \
libtool \
wget \
libpmi2-06-dev \
ca-certificates \
&& apt-get clean && rm -rf /var/lib/apt/lists/*

RUN wget -q -0 nccl-tests-2.13.6.tar.gz \
https://github.com/NVIDIA/nccl-tests/archive/refs/\
tags/v2.13.6.tar.gz \
&& tar xf nccl-tests-2.13.6.tar.gz \
&& cd nccl-tests-2.13.6 \
&& MPI=1 MPI_HOME=/opt/hpcx/ompi make -jS(nproc) \
& cd .. \
&& rm -rf nccl-tests-2.13.6.tar.gz

[annotations]
com.hooks.aws_ofi_nccl.enabled "true"
com.hooks.aws_ofi_nccl.variant = "cudall"

\;0'0 CSCS

ETH:zurich

Workload manager

e gives the user a way to specify the hardware resources required for his job
e itis anatural place to specify the environment one wants to use
e use an EDF to define the environment
o pull image only once per job, (or build it)
o possibly cache it in the parallel filesystem
o give a predictable shared environment (mounts, env, annotations)
o cleanup all resources at the end
e to be able to make the usage of the container seamless
o we need various configurarion points in a job lifetime:

= setup, run and cleanup) of a job

\?\o:-o CSCS 4 ETHziirich

Slurm Integration

e Slurm is the work load manager we use

e it can be extended with C based plugins
(SPANK)

challenges

e Cinterface
e |oaded and executed in various contexts

e difficult to test for failures, corner cases,
special configurations of slurm

o for example missing $USER in epilogue

e dependencies of plugin are more difficult to
handle in a container

N A g CSCS

SCHEDNMD

slurm

workload manager
Version 23.11

ABOUT
OVERVIEW

RELEASE NOTES

USING
DOCUMENTATION

FAQ
PUBLICATIONS

INSTALLING
DOWNLOAD

RELATED SOFTWARE
INSTALLATION GUIDE

GETTING HELP
MAILING LISTS

ENHANCED BY Google “

SPANK

Section: Slurm Component (8)
Updated: Slurm Component
Index

NAME

SPANK - Slurm Plug-in Architecture for Node and job
(K)control

DESCRIPTION

This manual briefly describes the capabilities of the
Slurm Plug-in Architecture for Node and job Kontrol
(SPANK) as well as the SPANK configuration file: (By
default: plugstack.conf.)

SPANK provides a very generic interface for stackable
plug-ins which may be used to dynamically modify the
job launch code in Slurm. SPANK plugins may be built
without access to Slurm source code. They need only

ETH:zurich

https://slurm.schedmd.com/
https://slurm.schedmd.com/spank.html

Pyxis => Sarus-slurm

e PoC done with Pyxis and enroot Goals

® pyXxisissues
ten in C e |ess error prone language than C
o written in
; e just our solution
o not ours
e make it more more flexible? Pluggable interface

o no unit tests just integration tests with

o difficult to debug o createContainer (master node)

e migrate toward something we own and that we can o startContainer (1x per node)

evolve o execTask (nTaskPerNode)

o "sarus-slurm" (provisional name) > stopContainer (1x per node)

o destroy/cleanupContainer (master node)

\?\o:-o CSCS 4 ETHziirich

Current PoC
e pyxis drop in replacement
o find all hidden magic

o o check that everything still works

e pluggable interface
| o support multiple backends

e error trace when failing

a

e no extra dependencies

e |anguage with less footguns than C

e git.cscs.ch/fmohamed/sarus-slurm

Dot %

\\):0 CSCS 5 ETHziirich

https://git.cscs.ch/fmohamed/sarus-slurm

Zig

e is anice small language, quite suited to low
level programming, that aims at replacing C.

e expose the the low level primitives and simplify
their usage

o does not hide very much

e debug your application, not your language

o keep the language simple

e stay in the same space as C

o encourage reuse of and from C (and C++)

¢

CSCS

o
%

ZIG

Download Learn News Zig Software Foundation Source Code @ Join a Community

Zig is a general-purpose programming language and GET STARTED

toolchain for maintaining robust, optimal and reusable L atest Release: 0.11.0

software.

7~ A Simple Language

Focus on debugging your application rather than debugging your
programming language knowledge.

¢ No hidden control flow.
¢ No hidden memory allocations.
* No preprocessor, no macros.

7 Comptime

A fresh approach to metaprogramming based on compile-time
code execution and lazy evaluation.

¢ Call any function at compile-time.
¢ Manipulate types as values without runtime overhead.
¢ Comptime emulates the target architecture.

7~ Maintain it with Zig
Incrementally improve your C/C++/Zig codebase.

¢ Use Zig as a zero-dependency, drop-in C/C++ compiler that
supports cross-compilation out-of-the-box.

e Leverage zig build to create a consistent development
environment across all platforms.

« Add a Zig compilation unit to C/C++ projects; cross-
language LTO is enabled by default.

In-depth overview || More code samples

Documentation Changes

const std = @import("std");
const parselnt = std.fmt.parselnt;

test "parse integers" {
const input = "123 67 89,99";
const ally = std.testing.allocator;

var list = std.ArrayList(u32).init(ally);
// Ensure the list is freed at scope exit.
// Try commenting out this line!

defer list.deinit();

var it = std.mem.tokenizeAny(u8, input, " ,");
while (it.next()) |num| {

const n = try parselnt(u32, num, 10);

try list.append(n);
i

const expected = [_Ju32{ 123, 67, 89, 99 };

for (expected, list.items) |exp, actual]| {
try std.testing.expectEqual(exp, actual);
}

$ zig test parse_integers.zig
1/1 parse_integers.test.parse integers... OK
All 1 tests passed.

ETH:zurich

ZIG

e very explicit: no hidden control flow (implicit destructor calls,
exceptions), and no hidden memory allocations.

o a bit more verbose

o simplifies the analysis of what happens looking just a the local context

o very useful for low level code, and to optimize

e neither preprocessor, nor macros, but a very nice comptime execution:

o any function can be called at compile time emulating the target architecture

o compile time functions can manipulate types

o Compile time is lazy (no unused function is compiled), and types do ducktyping at compile time.

e zig can incrementally build a C/C++/Zig codebase, and easily crosscompile.

\:o} CSCS o ETHziirich

Community

e sycl.it Software you can love
e system programming
o really undestanding the low level
o l.e.: glibc support
e embedded/freestanding as an option
e cross compilation

e quick compilation -> real incremental
compilation

30
\\0‘0 CSCS

Software You Can Love

celebrate the art of creating software for humans

YouTube - Twitch - Discord

GET NOTIFIED ABOUT THE NEXT EVENT
Jourgemaiicom

STREAM WILL GO LIVE ON MAY 16 AND 17 AT'9AM GEST

Learn more about
them on their channel!

P Visit kristoff_it

y ey,

14-17 May 202

Milan, Italy

https://sycl.it/

Getting started

e zigrun file.zig

o zigtools/zls

e ziginit-exe -> build.zig

e zig build sytem can build zig, C and C++
e zig build

e zig build test

e https://ziglang.org/learn/

o language

o standard library

\\):0 CSCS 11 ETHziirich

https://ziglang.org/learn/

How is Zig

Order independent top level declarations

no header files (but h files can be generated)
type declaration after name

var/const to declare variables

const can hold anything, value, functions, struct
commas also for last element

fn for functions, first arg can be self (like python)
o instance.f(x) <=> Class.f(instance,x)

error handling 'type Errors!type

expressions can return and still assign a value
defer/errdefer to do cleanup

unittest

error traces available on all targets

explicit allocators

&9 @® CSCS

@

12

test "test_id_list" {

}

const a = std.testing.allocator;
var idList = IdList.init(a);
defer idList.deinit();

= try idList.addId("pippo");

try std.testing.expectEqual(idList.ids.items.len, 1);

const IdList = struct {
allocator: std.mem.Allocator,

ids: std.ArraylListUnmanaged([:0]const u8) = .{},
pub fn init(allocator: std.mem.Allocator) IdList {

return .{ .allocator = allocator, }; }

pub fn deinit(self: *IdlList) void {

pub fn addId(self: *IdlList, value: []const u8) !usize {

I

for (self.ids.items) |el| self.allocator.free(el);

return self.ids.deinit(self.allocator); }

const newId = self.allocator.allocSentinel(

u8, value.len, 0) catch |err| { return err; };

errdefer self.allocator.free(newld);
for (newId, value) |*target, source]

target.* = if (source == ') return error.InvalidId

else source;
try self.ids.append(self.allocator, newId);
return self.ids.items.len - 1;

const std = @import("std");

ETH:zurich

C interoperability

pub usingnamespace @cImport({
@cInclude("slurm/spank.h");
@cInclude("sys/types.h");
@cInclude("string.h");
@cInclude("toml.h");

1)

const std = @import("std");
const sarus = @import("sarus_slurm.zig");
const spank = @import("spank.zig");

// the global context used by the plugin

pub var globalContext = sarus.SarusPluginContext{
.noContext = void{}

}i

// define all the ¢ function callbacks

export fn slurm_spank_init(spnk: spank.spank_t,
ac: c_int, argv: ?[*][*:0]const u8) spank.slurm_err_t {

return globalContext.slurm_spank_init(spnk, ac, argv);

N A g CSCS

13

e import header files

e pointers
o [*c] 132 :a generic c pointer to 32 bit integers
(very under determined)

o [*] 132 :anon null pointer to an array of

unknown length

o "[*:0]i32: a non null pointer to a null terminated
array

o * i32 :anon null pointer to a single 32 bit
integer

e 2T :apossibly null Type T (optional)

e []i32 :slice (range with .ptr and .len), should
be preferred to bare pointers

e [128]i32, [128:0]i32 : fixed size arrays

ETH:zurich

sarus-args.zig

const std = @import("std");
const zspank = @import("sarus_spank.zig");
const spankErrorToCi =
pub const SarusSlurmArgs =

zspank.spankErrorToCi;
struct {
allocator: std.mem.Allocator,
environment: ?[:0]const u8 = null,
/// Sets the name or path of the environment to read
pub fn set_environment(self: *SarusSlurmArgs,
arg_newVal: ?[]const u8) !void {
if (self.environment) |edf| self.allocator.free(edf);
self.environment = null;
if (arg_newVal) |newVal| {
const newValCopy = try self.allocator
.allocSentinel(u8, newVal.len, 0);
@memcpy (newValCopy, newVal);
self.environment = newValCopy;

}
}

/// callback for environment option
pub fn cb_spank_option_environment(arg_val: c_int,
optarg: [*c]const u8, arg_remote: c_int)
callconv(.C) c_int {

@@ CSCS

S 4

14

= arg_val;

_ = arg_remote;

if (optarg null or optarg.?[9] 0) {
return spankErrorToCi(zspank.SpankError.BAD_ARG) ;

}

const sarus_args: *SarusSlurmArgs =

globalArgsPrintErr("--environment") catch |err| {
return spankErrorToCi(err);

’;
sarus_args.set_environment(sliceTo(optarg, 9))
catch |err| {
return spankErrorToCi(err);
b
return 9;
}
I
test "set_args" {
const a = std.testing.allocator;
const expect = std.testing.expect;
var args: SarusSlurmArgs = SarusSlurmArgs.init(a);
defer args.deinit();
try args.set_environment("bla");
try expect(eql(u8, args.environment orelse "", "bla"))j
'

ETH:zurich

Z' 2 e Why Zig after all

o Error traces simplify debugging

e Why Not? o no dependencies of plugin
o Notyet 1.0 o nicer and safer than C
o smaller community o fast recompile/test

o Everything changes: HW, libraries, OS,...

o following language changes can be part of the
development work

o zig fmt took care of for (it) |el, index| {} ->
for (it, 0..) |el, index| {}

o we are not interested in experimental features
(async / await)

o some large projects like bun.sh,
tigerbeetle.com, match,... use it already

\:o:o CSCS 15 ETHziirich

https://bun.sh/
https://tigerbeetle.com/
https://github.com/hexops/mach/issues/999

&, CSCS .
\\).. Centro Svizzero di Calcolo Scientifico m Z U r I C h

Swiss National Supercomputing Centre

o

Mot Ra ed/
/YI?M mb r' *ram 0m.mndm‘f'(4u9.0)
@) Pr, r ‘Wl , {03 400:9 km? f"

No/ 77 o«{i Caom

.‘/ /

X =

Zig Alternatives

Rust

RN

a better C++

focused on safety

large community

cdylib target can create plugins that should

work

bindings to call C, bindgen can help generating

them

Stacktraces but no error traces

large and complex language

CSCS

16

Install Learn Playground Tools

A language empowering everyone
to build reliable and efficient software.

Why Rust?

Performance

Rust is blazingly fast and memory-
efficient: with no runtime or garbage
collector, it can power performance-
critical services, run on embedded
devices, and easily integrate with other
languages.

Build it in Rust

Reliability

Rust’s rich type system and ownership
model guarantee memory-safety and
thread-safety — enabling you to eliminate
many classes of bugs at compile-time.

Governance Community Blog

GET STARTED

Version 1.76.0

Productivity

Rust has great documentation, a friendly
compiler with useful error messages, and
top-notch tooling — an integrated
package manager and build tool, smart
multi-editor support with auto-
completion and type inspections, an
auto-formatter, and more.

In 2018, the Rust community decided to improve the programming experience for a few distinct domains (see the 2018 roadmap). For
these, you can find many high-quality crates and some awesome guides on how to get started.

Command Line

o

WebAssembly Networking

Whip up a CLI tool quickly with Use Rust to supercharge your Predictable performance
Rust’s robust ecosystem. Rust JavaScript, one module at a resource footprint. Rock-

helps you maintain your app time. Publish to npm, bundle

with confidence and distribute it with webpack, and you're offto network services.
with ease. the races.

BUILDING TOOLS

WRITING WEB APPS

Embedded

. Tiny Targeting low-resource devices?
solid Need low-level control without

reliability. Rust is great for giving up high-level

conveniences? Rust has you
covered.

WORKING ON SERVERS STARTING WITH EMBEDDED

ETH:zurich

https://github.com/rust-lang/rust-bindgen

FEATURES

TAGS

basics intermediate

advanced experimental

UPCOMING EVENTS

Sign In / Suggest an Article Register

About

News, Status & Discussion about Standard C++

Follow All Posts

The home of Standard C++ on the web — news, status and discussion about the C++ standard on all compilers and platforms.

Recent Highlights

C++23: Allocator Related
Changes - Sandor Dargo
By Blog Staff | Mar 13,2024 01:48 PM

C++20 Concepts Applied — Safe
Bitmasks Using Scoped Enums
- Andreas Fertig

By Blog Staff | Mar 11,2024 01:14 PM

Announcing the full ACCU 2024 Conference schedule —
ACCU & ShavedYaks
By philsquared | Mar 11, 2024 11:57 AM

Aggregates: C++17 vs. C++20 — Andreas Fertig
By Blog Staff | Mar 9, 2024 01:13 PM

Data Structures and Algorithms with the C++ STL -
John Farrier
By John Farrier | Mar 8,2024 11:19 AM

Articles & Books

C++23: Allocator Related
Changes - Sandor Dargo
By Blog Staff | Mar 13,2024 01:48 PM

C++20 Concepts Applied — Safe
Bitmasks Using Scoped Enums
— Andreas Fertig

By Blog Staff | Mar 11,2024 01:14 PM

Aggregates: C++17 vs. C++20 — Andreas Fertig
By Blog Staff | Mar 9, 2024 01:13 PM

Data Structures and Algorithms with the C++ STL -

John Farrier
By John Farrier | Mar 8, 2024 11:19 AM

Using std::expected from C++23 - Bartlomiej Filipek
By Blog Staff | Mar 7, 2024 12:59 PM

Recent CppCast Podcasts

Psychology and Starting Out as a Developer
Date: Mon, 11 Mar 2024

Compiler Explorer Revisited

Date: Fri, 23 Feb 2024

Teaching and Training Modern C++
Date: Fri, 9 Feb 2024

Reflection for C++26
Date: Fri, 26 Jan 2024

Recent C++ Weekly Podcasts

s a for' Loop?
Date: Fri, 1 Mar 2024

sa do Loop?
Date: Wed, 28 Feb 2024

Turbocharge Your Build With Mold?
Date: Mon, 26 Feb 2024

re ‘if /‘else" Statements?

Date: Fri, 23 Feb 2024

Product News
Seastar, ScyllaDB, and C++23

By Jordi Mon Companys | Feb 17, 2024
05:36 AM

PVS-Studio 7.29: Boost smart
pointers, plugin for Qt Creator on macOS
By Andrey Karpov | Feb 13, 2024 06:49 AM

mp-units 2.1.0 released - Mateusz Pusz
By Mateusz Pusz | Feb 6, 2024 12:40 PM

CppDepend 2024.1 Released! - Unveiling New Features
and Improvements
By CppDepend Team | Feb 4, 2024 06:03 AM

17

C++

improves on C

largest community

already well known by all

larger/complex language

stacktrace possible

more "hairs" (due to the long history)

at least libstdc++ dependency

ETH:zurich

Thanks

<& .
1¥,® CSCs 18 ETH:zurich

