
Sarus-slurm

a SPANK slurm Plugin written in Zig

Fawzi Mohamed

Containers

Give user control of the user
space

install any software

architecture and kernel remain
the same

various levels of isolation and
control

can be completely rootless
(unprivileged), the user does
not acquire new

large ecosystem of tools

tries to make execution
reproducible by freezing the
userspace tools and libraries

mount namespace

chroot (user has control on the
whole filesystem layout)

uenv ~> container with a
"golden image"

container can give the user
more freedom/control

if one uses that freedom things
are not necessarily optimized
for the specific hardware

hooks help in making hardware
optimization accessible to
more containers

1

Container first

Make the usage of container more transparent and
seamless

To the user it should look as much as possible like
the normal usage of a cluster

but with more control on his environment

well reproducible (prescriptive)

customizable to take advantage of existing
containers, test new releases, and use new
containers rebuilt from scratch

can have usual home/scratch folder with their
data

EDF: Environment Definition File

our solution to avoid repeating lot of options

A toml file that defines

image or a docker file

mount points,

environment variables

annotations

still in evolution

2

https://toml.io/

sample.toml

mounts = ["$SCRATCH:$SCRATCH"]
entrypoint = false
[image]
dockerfile="""
FROM nvcr.io/nvidia/pytorch:22.12-py3

to avoid interaction with apt-get
ENV DEBIAN_FRONTEND=noninteractive

RUN apt-get update && apt-get install -y \
 --allow-downgrades --allow-change-held-packages \
 --no-install-recommends \
 build-essential \
 automake \
 autoconf \
 libtool \
 wget \
 libpmi2-0-dev \
 ca-certificates \
 && apt-get clean && rm -rf /var/lib/apt/lists/*

RUN wget -q -O nccl-tests-2.13.6.tar.gz \
 https://github.com/NVIDIA/nccl-tests/archive/refs/\
tags/v2.13.6.tar.gz \
 && tar xf nccl-tests-2.13.6.tar.gz \
 && cd nccl-tests-2.13.6 \
 && MPI=1 MPI_HOME=/opt/hpcx/ompi make -j$(nproc) \
 && cd .. \
 && rm -rf nccl-tests-2.13.6.tar.gz
"""

[annotations]
com.hooks.aws_ofi_nccl.enabled = "true"
com.hooks.aws_ofi_nccl.variant = "cuda11"

3

Workload manager

gives the user a way to specify the hardware resources required for his job

it is a natural place to specify the environment one wants to use

use an EDF to define the environment

pull image only once per job, (or build it)

possibly cache it in the parallel filesystem

give a predictable shared environment (mounts, env, annotations)

cleanup all resources at the end

to be able to make the usage of the container seamless

we need various configurarion points in a job lifetime:

setup, run and cleanup) of a job

4

Slurm Integration

Slurm is the work load manager we use

it can be extended with C based plugins
(SPANK)

challenges

C interface

loaded and executed in various contexts

difficult to test for failures, corner cases,
special configurations of slurm

for example missing $USER in epilogue

dependencies of plugin are more difficult to
handle in a container

5

https://slurm.schedmd.com/
https://slurm.schedmd.com/spank.html

Pyxis => Sarus-slurm

PoC done with Pyxis and enroot

pyxis issues

written in C

not ours

no unit tests just integration tests

difficult to debug

migrate toward something we own and that we can
evolve

"sarus-slurm" (provisional name)

Goals

less error prone language than C

just our solution

make it more more flexible? Pluggable interface
with

createContainer (master node)

startContainer (1x per node)

execTask (nTaskPerNode)

stopContainer (1x per node)

destroy/cleanupContainer (master node)

6

Current PoC

pyxis drop in replacement

find all hidden magic

check that everything still works

pluggable interface

support multiple backends

error trace when failing

mock test

no extra dependencies

language with less footguns than C

git.cscs.ch/fmohamed/sarus-slurm

7

https://git.cscs.ch/fmohamed/sarus-slurm

Zig

is a nice small language, quite suited to low
level programming, that aims at replacing C.

expose the the low level primitives and simplify
their usage

does not hide very much

debug your application, not your language

keep the language simple

stay in the same space as C

encourage reuse of and from C (and C++)

8

very explicit: no hidden control flow (implicit destructor calls,
exceptions), and no hidden memory allocations.

a bit more verbose

simplifies the analysis of what happens looking just a the local context

very useful for low level code, and to optimize

neither preprocessor, nor macros, but a very nice comptime execution:

any function can be called at compile time emulating the target architecture

compile time functions can manipulate types

Compile time is lazy (no unused function is compiled), and types do ducktyping at compile time.

zig can incrementally build a C/C++/Zig codebase, and easily crosscompile.

9

Community

sycl.it Software you can love

system programming

really undestanding the low level

i.e.: glibc support

embedded/freestanding as an option

cross compilation

quick compilation -> real incremental
compilation

10

https://sycl.it/

Getting started

zig run file.zig

zigtools/zls

zig init-exe -> build.zig

zig build sytem can build zig, C and C++

zig build

zig build test

https://ziglang.org/learn/

language

standard library

11

https://ziglang.org/learn/

How is Zig

Order independent top level declarations

no header files (but h files can be generated)

type declaration after name

var/const to declare variables

const can hold anything, value, functions, struct

commas also for last element

fn for functions, first arg can be self (like python)

instance.f(x) <=> Class.f(instance,x)

error handling !type Errors!type

expressions can return and still assign a value

defer/errdefer to do cleanup

unittest

error traces available on all targets

explicit allocators

test "test_id_list" {
 const a = std.testing.allocator;
 var idList = IdList.init(a);
 defer idList.deinit();
 _ = try idList.addId("pippo");
 try std.testing.expectEqual(idList.ids.items.len, 1);
}
const IdList = struct {
 allocator: std.mem.Allocator,
 ids: std.ArrayListUnmanaged([:0]const u8) = .{},
 pub fn init(allocator: std.mem.Allocator) IdList {
 return .{ .allocator = allocator, }; }
 pub fn deinit(self: *IdList) void {
 for (self.ids.items) |el| self.allocator.free(el);
 return self.ids.deinit(self.allocator); }
 pub fn addId(self: *IdList, value: []const u8) !usize {
 const newId = self.allocator.allocSentinel(
 u8, value.len, 0) catch |err| { return err; };
 errdefer self.allocator.free(newId);
 for (newId, value) |*target, source|
 target.* = if (source == ' ') return error.InvalidId
 else source;
 try self.ids.append(self.allocator, newId);
 return self.ids.items.len - 1;
} };
const std = @import("std");

12

C interoperability

pub usingnamespace @cImport({
 @cInclude("slurm/spank.h");
 @cInclude("sys/types.h");
 @cInclude("string.h");
 @cInclude("toml.h");
});

const std = @import("std");
const sarus = @import("sarus_slurm.zig");
const spank = @import("spank.zig");

// the global context used by the plugin
pub var globalContext = sarus.SarusPluginContext{
 .noContext = void{}
};
// define all the c function callbacks
export fn slurm_spank_init(spnk: spank.spank_t,
 ac: c_int, argv: ?[*][*:0]const u8) spank.slurm_err_t {
 return globalContext.slurm_spank_init(spnk, ac, argv);
}

import header files

pointers

[*c] i32 : a generic c pointer to 32 bit integers
(very under determined)

[*] i32 : a non null pointer to an array of
unknown length

`[*:0] i32: a non null pointer to a null terminated
array

* i32 : a non null pointer to a single 32 bit
integer

?T : a possibly null Type T (optional)

[]i32 : slice (range with .ptr and .len), should
be preferred to bare pointers

[128]i32, [128:0]i32 : fixed size arrays

13

sarus-args.zig

const std = @import("std");
const zspank = @import("sarus_spank.zig");
const spankErrorToCi = zspank.spankErrorToCi;
pub const SarusSlurmArgs = struct {
 allocator: std.mem.Allocator,
 environment: ?[:0]const u8 = null,
 /// Sets the name or path of the environment to read
 pub fn set_environment(self: *SarusSlurmArgs,
 arg_newVal: ?[]const u8) !void {
 if (self.environment) |edf| self.allocator.free(edf);
 self.environment = null;
 if (arg_newVal) |newVal| {
 const newValCopy = try self.allocator
 .allocSentinel(u8, newVal.len, 0);
 @memcpy(newValCopy, newVal);
 self.environment = newValCopy;
 }
 }
 /// callback for environment option
 pub fn cb_spank_option_environment(arg_val: c_int,
 optarg: [*c]const u8, arg_remote: c_int)
 callconv(.C) c_int {

 _ = arg_val;
 _ = arg_remote;
 if (optarg == null or optarg.?[0] == 0) {
 return spankErrorToCi(zspank.SpankError.BAD_ARG);
 }
 const sarus_args: *SarusSlurmArgs =
 globalArgsPrintErr("--environment") catch |err| {
 return spankErrorToCi(err);
 };
 sarus_args.set_environment(sliceTo(optarg, 0))
 catch |err| {
 return spankErrorToCi(err);
 };
 return 0;
 }
};
test "set_args" {
 const a = std.testing.allocator;
 const expect = std.testing.expect;
 var args: SarusSlurmArgs = SarusSlurmArgs.init(a);
 defer args.deinit();

 try args.set_environment("bla");
 try expect(eql(u8, args.environment orelse "", "bla"));
}

14

Zig?

Why Not?

Not yet 1.0

smaller community

Why Zig after all

Error traces simplify debugging

no dependencies of plugin

nicer and safer than C

fast recompile/test

Everything changes: HW, libraries, OS,...

following language changes can be part of the
development work

zig fmt took care of for (it) |el, index| {} ->
for (it, 0..) |el, index| {}

we are not interested in experimental features
(async / await)

some large projects like bun.sh ,
tigerbeetle.com, match,... use it already

15

https://bun.sh/
https://tigerbeetle.com/
https://github.com/hexops/mach/issues/999

Zig Alternatives

Rust

a better C++

focused on safety

large community

cdylib target can create plugins that should
work

bindings to call C, bindgen can help generating
them

Stacktraces but no error traces

large and complex language

16

https://github.com/rust-lang/rust-bindgen

C++

improves on C

largest community

already well known by all

larger/complex language

stacktrace possible

more "hairs" (due to the long history)

at least libstdc++ dependency

17

Thanks

18

